Piecewise Bivariate Hermite Interpolations for Large Sets of Scattered Data
نویسندگان
چکیده
The requirements for interpolation of scattered data are high accuracy and high efficiency. In this paper, a piecewise bivariate Hermite interpolant satisfying these requirements is proposed. We firstly construct a triangulation mesh using the given scattered point set. Based on this mesh, the computational point (x, y) is divided into two types: interior point and exterior point. The value of Hermite interpolation polynomial on a triangle will be used as the approximate value if point (x, y) is an interior point, while the value of a Hermite interpolation function with the form of weighted combination will be used if it is an exterior point. Hermite interpolation needs the first-order derivatives of the interpolated function which is not directly given in scatted data, so this paper also gives the approximate derivative at every scatted point using local radial basis function interpolation. And numerical tests indicate that the proposed piecewise bivariate Hermite interpolations are economic and have good approximation capacity.
منابع مشابه
Hermite Birkhoff interpolation of scattered data by combined Shepard operators
Methods approaching the problem of the Hermite Birkhoff interpolation of scattered data by combining Shepard operators with local interpolating polynomials are not new in literature [1–4]. In [3] combinations of Shepard operators with bivariate Hermite-Birkhoff local interpolating polynomials are introduced to increase the algebraic degree of precision (polynomial reproduction degree) of Shepar...
متن کاملEnergy minimization method for scattered data Hermite interpolation
Given a set of scattered data with derivatives values, we use a minimal energy method to find Hermite interpolation based on bivariate spline spaces over a triangulation of the scattered data locations. We show that the minimal energy method produces a unique Hermite spline interpolation of the given scattered data with derivative values. Also we show that the Hermite spline interpolation conve...
متن کاملApproximation by C Splines on Piecewise Conic Domains
We develop a Hermite interpolation scheme and prove error bounds forC bivariate piecewise polynomial spaces of Argyris type vanishing on the boundary of curved domains enclosed by piecewise conics.
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013